Assignment V: MTH 213, Fall 2017

Ayman Badawi

QUESTION 1. Let $n \in N^{*}$. Prove that $n C k=n C(n-k)$ for every $k, 0 \leq k \leq n$. Use direct prove (hint: Write down the formula for each and just stare!, so now we know $20 C 3=20 C 17,61 C 40=61 C 21$, and so on...)

QUESTION 2. Let $n \in N^{*}$. Prove that $(n+1) C(k+1)=n C(k+1)+n C k$ for every $k, 0 \leq k \leq n-1$. Use direct prove (hint: Write down the formula for each. Now some how make the denominator of the right hand side $=$ the denominator of left hand side... and you should get it. This fact is used when we constructed Pascal Triangle)

QUESTION 3. Use Math. Induction to prove that $n C 0+n C 1+\cdots+n C n=2^{n}$ for every $n \in N^{*}$. ([Hint: In the last step, you need to use the fact from Question 2.)
QUESTION 4. Give me a direct proof of the fact: $n C 0+n C 1+\cdots+n C n=2^{n}$ for every $n \in N^{*}$.
QUESTION 5. Use Math. Induction to prove that $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ for every $n \in N^{*}$.
QUESTION 6. Let $x_{1}=4, x_{n+1}=\sqrt{3+4 x_{n}}$. Use Math. Induction to prove that $x_{n} \leq 5$ for every $n \geq 1$.
QUESTION 7. Write down T or F. If you select F , then show me by example why it is F
(i) $\exists x \in N^{*}$ and $\exists y \in Z$ such that $x+y=0$.
(ii) $\exists x \in N^{*}$ such that $x+y=0 \forall y \in Z$.
(iii) $\forall y \in Q^{*} \exists x \in Q$ such that $x y=2$ (you read this as for every $y \ldots$ there exists $\mathrm{x} \ldots$...)
(iv) $\exists!x \in N$ such that $y x=4 y \forall y \in R$
(v) $\exists!x \in N$ such that $y x=4 y \forall y \in Q^{*}$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Q1. $n \in N^{*}$
Prove that $n C k=n C(n-k)$ for every $k, 0 \leqslant k \leqslant n$.

$$
\begin{aligned}
n C k & =\frac{n!}{k!\cdot(n-k)!} \\
n C(n-k) & =\frac{n!}{(n-k)!(n-(n-k)!} \\
& =\frac{n!}{(n-k)!\cdot(+k)!}
\end{aligned}
$$

Hence, by direct proof we see that the formula for both is =

Q2. $n \in N^{*}$
Prove that $(n+1) C(k+1)=$ $n C(K+1)+n C K$ for every k;

$$
0 \leqslant k \leqslant n-1
$$

(1)- $(n+1) C(k+1)=\frac{(n+1)!}{(k+1)!\cdot(n+1)(k+1))!}$
(2)- $n C(k+1)+n C k=\frac{n!}{(k+1)!\cdot(n-(k+1))!}+\frac{n!}{k!(n-k)!}$
(1) $=(2) \Rightarrow \frac{(n+1)!}{(k+1)![n+1-k-1]!}=\frac{n!}{(k+1)!(n-k-1)!}+\frac{n!}{k!(n-k)!}$
remove n! and K! from both sides

$$
\frac{(n+1)}{(k+1)(n-k)!}=\frac{1}{(k+1)[n-k-1]!}+\frac{1}{(n-k)!}
$$

remove $[n-k-1]$!

$$
\frac{(n+1)}{(k+1)(n-k)}=\frac{1}{(k+1)}+\frac{1}{(n-k)}
$$

$$
\frac{(n+1)}{(k+1)(n-k)}=\frac{(n-k)+(k+1)}{(k+1)(n-k)}
$$

Q3. Use Induction to prove

$$
n C O+n C 1+\ldots+n C_{n}=2^{n}
$$ for every $n \in N^{*}$

(1) Prove it for $n=1$

$$
1 C 0+1 C 1=2^{1}
$$

(2) Assume it is true for $n=k \geqslant 1$

$$
K C O+K C 1+\ldots+K C K=2^{K}
$$

(3) Prove it for $n=k+1$ prove $(k+1) C_{i}=2^{(k+1)}$

$$
\begin{array}{r}
\Rightarrow(K+1)(0+(K+1)(1+\ldots+ \\
\quad(K+1) C(K+1)=2^{k+1}
\end{array}
$$

Use fact from Q_{2} :
so $\binom{k+1}{0}=1$,

$$
\begin{aligned}
\binom{k+1}{1} & =\binom{k}{1}+\binom{k}{0}, \\
\binom{k+1}{2} & =\underline{\binom{k}{2}}+\binom{k}{1}, \\
\binom{k+1}{3} & =\binom{k}{3}
\end{aligned}+\binom{k}{2}, ~\binom{k+1}{4}=\binom{k}{4}+\overline{\left(\begin{array}{l}
k
\end{array}\right)},
$$

Here, we conclude that:
$\binom{k}{0}$ and $\binom{k}{k}$ appear once, however the others appear twice the sequence continues.
iv) $\forall y \in Q^{*} \quad \exists x \in Q$ sit $x y=2$
True

$$
\begin{aligned}
& 4 \times \frac{1}{2}=2 \\
& \frac{5}{2} \times \frac{4}{5}=2
\end{aligned}
$$

(v) $\exists!x \in N$ st $y x=4 y \quad \forall y \in R$ False $\begin{aligned} & \text { assume, } \\ & y=0\end{aligned}$, then x can be any
(vi) $\exists!x \in N$ sit. $y x=4 y \forall y \in Q^{*}$ True $x=4$

For every real number x we know that
$(X+1)^{\wedge} n=n C 0 X^{\wedge} n+n C 1 X^{\wedge}\{n-1\}+\ldots+n C(n-1) X+n C n$.
So let $X=1$ in the equation above. We have
$2^{\wedge} \mathrm{n}=\mathrm{nC0}+\mathrm{nC} 1+\ldots+\mathrm{nC}(\mathrm{n}-1)+\mathrm{nCn}$

Q5. Use Induction to prove $\sum_{i=1}^{n} \frac{1}{i(1+1)}=\frac{n}{n+1}$ for every

$$
n \in N^{*}
$$

(1) Prove it for $n=1$

$$
\sum_{i=1}^{1} \frac{1(i, 1)}{i(i+1)}=\frac{1}{(1+1)}=\frac{1}{2}
$$

(2) Assume it is true for

$$
n=k \geqslant 1
$$

$\sum_{i=1}^{k} \frac{1}{i(i+1)}=\frac{k}{(k+1)}$ is true/
(3) Prove it for $n=k+1$ we need to show that

$$
\begin{aligned}
& \quad \sum_{i=1}^{k+1} \underbrace{\frac{1}{i+1)}}_{i=1}=\frac{k+1}{(k+1)+1} \\
& =\frac{\frac{k}{(k+1)}+\frac{1}{(k+1)(k+1+1)}}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{k+1}{k+2}=\frac{k+1}{(k+1)+1}
\end{aligned}
$$

Q6. $\quad x_{1}=4, \quad x_{n+1}=\sqrt{3+4 x_{n}}$
Use Math. Induction to prove
that $x_{n} \leqslant 5$ for every $n \geqslant 1$
(1) Prove for $n=1$

$$
\begin{aligned}
x_{1+1} & =\sqrt{3+4 x_{1}}=\sqrt{3+4(4)} \\
& =\sqrt{19} \leqslant 5
\end{aligned}
$$

(2) Assume it is true for $n=k \geq 1$

$$
x_{k}=\sqrt{3+4 x_{k-1}} \leqslant 5
$$

(3) Prove it for $n=k+1$,

$$
\begin{aligned}
x_{k+1}=\sqrt{3+4 x_{k}} & \leqslant \sqrt{3+4(5)} \\
& \leqslant \sqrt{23}<5
\end{aligned}
$$

Q7. (i) $\exists x \in N^{*}$ and $\exists y \in z$ s.t. $x+y=0$

True

$$
\begin{aligned}
& 1+(-1)=0 \\
& 2+(-2)=0
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \exists x \in N^{*} \text { s.t. } x+y=0 \\
& \forall y \in z
\end{aligned}
$$

False

$$
\begin{aligned}
& 1+(-2)=-1=0 \\
& 1+2=3=0
\end{aligned}
$$

(iii) $\exists x \in z^{*}$

$$
\text { s.t } x+y=0 \quad \forall y \in z
$$

False

$$
2+0=2 \neq 0
$$

\therefore we can say that:

$$
2\left[\begin{array}{llll}
k & k & k & k \\
0 & 1 & 2 & k
\end{array}\right]+2-2
$$

* we multiplied by 2 because they each occurred twice.
\star we subtracted by 2 because $\binom{k}{0}$ and $\binom{k}{k}$ occurred once, not twice, we add 2 because

$$
\binom{k+1}{0}=1 \quad \text { and }\binom{k+1}{k+1}=1
$$

from the assumption (2) we can see that.

$$
\underbrace{22^{k}=2^{(k+1)}}_{\left.\left.2: \begin{array}{llll}
k & k & k & k \\
k & 1 & 2 & k
\end{array}\right]+2-2\right)}
$$

